Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EBioMedicine ; 70: 103485, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1322072

ABSTRACT

Background Older age is the most powerful risk factor for adverse coronavirus disease-19 (COVID-19) outcomes. It is uncertain whether leucocyte telomere length (LTL), previously proposed as a marker of biological age, is also associated with COVID-19 outcomes. Methods We associated LTL values obtained from participants recruited into UK Biobank (UKB) during 2006-2010 with adverse COVID-19 outcomes recorded by 30 November 2020, defined as a composite of any of the following: hospital admission, need for critical care, respiratory support, or mortality. Using information on 130 LTL-associated genetic variants, we conducted exploratory Mendelian randomisation (MR) analyses in UKB to evaluate whether observational associations might reflect cause-and-effect relationships. Findings Of 6775 participants in UKB who tested positive for infection with SARS-CoV-2 in the community, there were 914 (13.5%) with adverse COVID-19 outcomes. The odds ratio (OR) for adverse COVID-19 outcomes was 1·17 (95% CI 1·05-1·30; P = 0·004) per 1-SD shorter usual LTL, after adjustment for age, sex and ethnicity. Similar ORs were observed in analyses that: adjusted for additional risk factors; disaggregated the composite outcome and reduced the scope for selection or collider bias. In MR analyses, the OR for adverse COVID-19 outcomes was directionally concordant but non-significant. Interpretation Shorter LTL is associated with higher risk of adverse COVID-19 outcomes, independent of several major risk factors for COVID-19 including age. Further data are needed to determine whether this association reflects causality. Funding UK Medical Research Council, Biotechnology and Biological Sciences Research Council and British Heart Foundation.


Subject(s)
COVID-19/virology , Leukocytes/pathology , SARS-CoV-2/genetics , Telomere/genetics , Aged , Biological Specimen Banks , COVID-19/pathology , Cohort Studies , Female , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Risk Factors , United Kingdom
2.
Eur Heart J ; 41(48): 4580-4588, 2020 12 21.
Article in English | MEDLINE | ID: covidwho-1066303

ABSTRACT

AIMS: Angiotensin-converting enzyme 2 (ACE2) is the cellular entry point for severe acute respiratory syndrome coronavirus (SARS-CoV-2)-the cause of coronavirus disease 2019 (COVID-19). However, the effect of renin-angiotensin system (RAS)-inhibition on ACE2 expression in human tissues of key relevance to blood pressure regulation and COVID-19 infection has not previously been reported. METHODS AND RESULTS: We examined how hypertension, its major metabolic co-phenotypes, and antihypertensive medications relate to ACE2 renal expression using information from up to 436 patients whose kidney transcriptomes were characterized by RNA-sequencing. We further validated some of the key observations in other human tissues and/or a controlled experimental model. Our data reveal increasing expression of ACE2 with age in both human lungs and the kidney. We show no association between renal expression of ACE2 and either hypertension or common types of RAS inhibiting drugs. We demonstrate that renal abundance of ACE2 is positively associated with a biochemical index of kidney function and show a strong enrichment for genes responsible for kidney health and disease in ACE2 co-expression analysis. CONCLUSION: Our results indicate that neither hypertension nor antihypertensive treatment is likely to alter the expression of the key entry receptor for SARS-CoV-2 in the human kidney. Our data further suggest that in the absence of SARS-CoV-2 infection, kidney ACE2 is most likely nephro-protective but the age-related increase in its expression within lungs and kidneys may be relevant to the risk of SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antihypertensive Agents/pharmacology , Hypertension , Kidney Tubules/metabolism , Lung/metabolism , Renin-Angiotensin System/drug effects , Adrenergic beta-Antagonists/pharmacology , Adult , Age Factors , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , COVID-19/complications , Diuretics/pharmacology , Female , Gene Expression Profiling , Glomerular Filtration Rate , Humans , Hypertension/drug therapy , Hypertension/genetics , Kidney Tubules/physiopathology , Male , Middle Aged , Rats , Rats, Inbred SHR , SARS-CoV-2 , Sequence Analysis, RNA , Sex Factors , Transcriptome/drug effects
4.
Eur Heart J ; 41(19): 1810-1817, 2020 05 14.
Article in English | MEDLINE | ID: covidwho-629506

ABSTRACT

AIMS: The current pandemic coronavirus SARS-CoV-2 infects a wide age group but predominantly elderly individuals, especially men and those with cardiovascular disease. Recent reports suggest an association with use of renin-angiotensin-aldosterone system (RAAS) inhibitors. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for coronaviruses. Higher ACE2 concentrations might lead to increased vulnerability to SARS-CoV-2 in patients on RAAS inhibitors. METHODS AND RESULTS: We measured ACE2 concentrations in 1485 men and 537 women with heart failure (index cohort). Results were validated in 1123 men and 575 women (validation cohort).The median age was 69 years for men and 75 years for women. The strongest predictor of elevated concentrations of ACE2 in both cohorts was male sex (estimate = 0.26, P < 0.001; and 0.19, P < 0.001, respectively). In the index cohort, use of ACE inhibitors, angiotensin receptor blockers (ARBs), or mineralocorticoid receptor antagonists (MRAs) was not an independent predictor of plasma ACE2. In the validation cohort, ACE inhibitor (estimate = -0.17, P = 0.002) and ARB use (estimate = -0.15, P = 0.03) were independent predictors of lower plasma ACE2, while use of an MRA (estimate = 0.11, P = 0.04) was an independent predictor of higher plasma ACE2 concentrations. CONCLUSION: In two independent cohorts of patients with heart failure, plasma concentrations of ACE2 were higher in men than in women, but use of neither an ACE inhibitor nor an ARB was associated with higher plasma ACE2 concentrations. These data might explain the higher incidence and fatality rate of COVID-19 in men, but do not support previous reports suggesting that ACE inhibitors or ARBs increase the vulnerability for COVID-19 through increased plasma ACE2 concentrations.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Heart Failure/blood , Mineralocorticoid Receptor Antagonists/therapeutic use , Peptidyl-Dipeptidase A/blood , Renin-Angiotensin System/drug effects , Aged , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Coronavirus Infections , Europe , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral , SARS-CoV-2 , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL